3.1.55 \(\int \frac {(a+b x^2)^2 \sin (c+d x)}{x^4} \, dx\) [55]

Optimal. Leaf size=134 \[ -\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{6 x^2}+2 a b d \cos (c) \text {Ci}(d x)-\frac {1}{6} a^2 d^3 \cos (c) \text {Ci}(d x)-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}+\frac {a^2 d^2 \sin (c+d x)}{6 x}-2 a b d \sin (c) \text {Si}(d x)+\frac {1}{6} a^2 d^3 \sin (c) \text {Si}(d x) \]

[Out]

2*a*b*d*Ci(d*x)*cos(c)-1/6*a^2*d^3*Ci(d*x)*cos(c)-b^2*cos(d*x+c)/d-1/6*a^2*d*cos(d*x+c)/x^2-2*a*b*d*Si(d*x)*si
n(c)+1/6*a^2*d^3*Si(d*x)*sin(c)-1/3*a^2*sin(d*x+c)/x^3-2*a*b*sin(d*x+c)/x+1/6*a^2*d^2*sin(d*x+c)/x

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3420, 2718, 3378, 3384, 3380, 3383} \begin {gather*} -\frac {1}{6} a^2 d^3 \cos (c) \text {CosIntegral}(d x)+\frac {1}{6} a^2 d^3 \sin (c) \text {Si}(d x)+\frac {a^2 d^2 \sin (c+d x)}{6 x}-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {a^2 d \cos (c+d x)}{6 x^2}+2 a b d \cos (c) \text {CosIntegral}(d x)-2 a b d \sin (c) \text {Si}(d x)-\frac {2 a b \sin (c+d x)}{x}-\frac {b^2 \cos (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^2*Sin[c + d*x])/x^4,x]

[Out]

-((b^2*Cos[c + d*x])/d) - (a^2*d*Cos[c + d*x])/(6*x^2) + 2*a*b*d*Cos[c]*CosIntegral[d*x] - (a^2*d^3*Cos[c]*Cos
Integral[d*x])/6 - (a^2*Sin[c + d*x])/(3*x^3) - (2*a*b*Sin[c + d*x])/x + (a^2*d^2*Sin[c + d*x])/(6*x) - 2*a*b*
d*Sin[c]*SinIntegral[d*x] + (a^2*d^3*Sin[c]*SinIntegral[d*x])/6

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3378

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m
 + 1))), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3420

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegran
d[Sin[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^2 \sin (c+d x)}{x^4} \, dx &=\int \left (b^2 \sin (c+d x)+\frac {a^2 \sin (c+d x)}{x^4}+\frac {2 a b \sin (c+d x)}{x^2}\right ) \, dx\\ &=a^2 \int \frac {\sin (c+d x)}{x^4} \, dx+(2 a b) \int \frac {\sin (c+d x)}{x^2} \, dx+b^2 \int \sin (c+d x) \, dx\\ &=-\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}+\frac {1}{3} \left (a^2 d\right ) \int \frac {\cos (c+d x)}{x^3} \, dx+(2 a b d) \int \frac {\cos (c+d x)}{x} \, dx\\ &=-\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{6 x^2}-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}-\frac {1}{6} \left (a^2 d^2\right ) \int \frac {\sin (c+d x)}{x^2} \, dx+(2 a b d \cos (c)) \int \frac {\cos (d x)}{x} \, dx-(2 a b d \sin (c)) \int \frac {\sin (d x)}{x} \, dx\\ &=-\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{6 x^2}+2 a b d \cos (c) \text {Ci}(d x)-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}+\frac {a^2 d^2 \sin (c+d x)}{6 x}-2 a b d \sin (c) \text {Si}(d x)-\frac {1}{6} \left (a^2 d^3\right ) \int \frac {\cos (c+d x)}{x} \, dx\\ &=-\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{6 x^2}+2 a b d \cos (c) \text {Ci}(d x)-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}+\frac {a^2 d^2 \sin (c+d x)}{6 x}-2 a b d \sin (c) \text {Si}(d x)-\frac {1}{6} \left (a^2 d^3 \cos (c)\right ) \int \frac {\cos (d x)}{x} \, dx+\frac {1}{6} \left (a^2 d^3 \sin (c)\right ) \int \frac {\sin (d x)}{x} \, dx\\ &=-\frac {b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{6 x^2}+2 a b d \cos (c) \text {Ci}(d x)-\frac {1}{6} a^2 d^3 \cos (c) \text {Ci}(d x)-\frac {a^2 \sin (c+d x)}{3 x^3}-\frac {2 a b \sin (c+d x)}{x}+\frac {a^2 d^2 \sin (c+d x)}{6 x}-2 a b d \sin (c) \text {Si}(d x)+\frac {1}{6} a^2 d^3 \sin (c) \text {Si}(d x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.27, size = 114, normalized size = 0.85 \begin {gather*} \frac {1}{6} \left (-\frac {6 b^2 \cos (c+d x)}{d}-\frac {a^2 d \cos (c+d x)}{x^2}-a d \left (-12 b+a d^2\right ) \cos (c) \text {Ci}(d x)-\frac {2 a^2 \sin (c+d x)}{x^3}-\frac {12 a b \sin (c+d x)}{x}+\frac {a^2 d^2 \sin (c+d x)}{x}+a d \left (-12 b+a d^2\right ) \sin (c) \text {Si}(d x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^2*Sin[c + d*x])/x^4,x]

[Out]

((-6*b^2*Cos[c + d*x])/d - (a^2*d*Cos[c + d*x])/x^2 - a*d*(-12*b + a*d^2)*Cos[c]*CosIntegral[d*x] - (2*a^2*Sin
[c + d*x])/x^3 - (12*a*b*Sin[c + d*x])/x + (a^2*d^2*Sin[c + d*x])/x + a*d*(-12*b + a*d^2)*Sin[c]*SinIntegral[d
*x])/6

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 120, normalized size = 0.90

method result size
derivativedivides \(d^{3} \left (a^{2} \left (-\frac {\sin \left (d x +c \right )}{3 d^{3} x^{3}}-\frac {\cos \left (d x +c \right )}{6 d^{2} x^{2}}+\frac {\sin \left (d x +c \right )}{6 d x}+\frac {\sinIntegral \left (d x \right ) \sin \left (c \right )}{6}-\frac {\cosineIntegral \left (d x \right ) \cos \left (c \right )}{6}\right )+\frac {2 a b \left (-\frac {\sin \left (d x +c \right )}{d x}-\sinIntegral \left (d x \right ) \sin \left (c \right )+\cosineIntegral \left (d x \right ) \cos \left (c \right )\right )}{d^{2}}-\frac {b^{2} \cos \left (d x +c \right )}{d^{4}}\right )\) \(120\)
default \(d^{3} \left (a^{2} \left (-\frac {\sin \left (d x +c \right )}{3 d^{3} x^{3}}-\frac {\cos \left (d x +c \right )}{6 d^{2} x^{2}}+\frac {\sin \left (d x +c \right )}{6 d x}+\frac {\sinIntegral \left (d x \right ) \sin \left (c \right )}{6}-\frac {\cosineIntegral \left (d x \right ) \cos \left (c \right )}{6}\right )+\frac {2 a b \left (-\frac {\sin \left (d x +c \right )}{d x}-\sinIntegral \left (d x \right ) \sin \left (c \right )+\cosineIntegral \left (d x \right ) \cos \left (c \right )\right )}{d^{2}}-\frac {b^{2} \cos \left (d x +c \right )}{d^{4}}\right )\) \(120\)
risch \(\frac {\expIntegral \left (1, -i d x \right ) \cos \left (c \right ) a^{2} d^{3}}{12}+\frac {\expIntegral \left (1, i d x \right ) \cos \left (c \right ) a^{2} d^{3}}{12}-\cos \left (c \right ) \expIntegral \left (1, -i d x \right ) a b d -\cos \left (c \right ) \expIntegral \left (1, i d x \right ) a b d +\frac {i \expIntegral \left (1, -i d x \right ) \sin \left (c \right ) a^{2} d^{3}}{12}-\frac {i \expIntegral \left (1, i d x \right ) \sin \left (c \right ) a^{2} d^{3}}{12}-i \sin \left (c \right ) \expIntegral \left (1, -i d x \right ) a b d +i \sin \left (c \right ) \expIntegral \left (1, i d x \right ) a b d -\frac {\left (2 a^{2} d^{8} x^{4}+12 b^{2} x^{6} d^{6}\right ) \cos \left (d x +c \right )}{12 d^{7} x^{6}}+\frac {i \left (-2 i a^{2} d^{9} x^{5}+24 i a b \,d^{7} x^{5}+4 i a^{2} d^{7} x^{3}\right ) \sin \left (d x +c \right )}{12 d^{7} x^{6}}\) \(218\)
meijerg \(\frac {b^{2} \sin \left (c \right ) \sin \left (d x \right )}{d}+\frac {b^{2} \sqrt {\pi }\, \cos \left (c \right ) \left (\frac {1}{\sqrt {\pi }}-\frac {\cos \left (d x \right )}{\sqrt {\pi }}\right )}{d}+\frac {d^{2} a b \sqrt {\pi }\, \sin \left (c \right ) \left (-\frac {4 d^{2} \cos \left (x \sqrt {d^{2}}\right )}{x \left (d^{2}\right )^{\frac {3}{2}} \sqrt {\pi }}-\frac {4 \sinIntegral \left (x \sqrt {d^{2}}\right )}{\sqrt {\pi }}\right )}{2 \sqrt {d^{2}}}+\frac {d a b \sqrt {\pi }\, \cos \left (c \right ) \left (\frac {4 \gamma -4+4 \ln \left (x \right )+4 \ln \left (d \right )}{\sqrt {\pi }}+\frac {4}{\sqrt {\pi }}-\frac {4 \gamma }{\sqrt {\pi }}-\frac {4 \ln \left (2\right )}{\sqrt {\pi }}-\frac {4 \ln \left (\frac {d x}{2}\right )}{\sqrt {\pi }}-\frac {4 \sin \left (d x \right )}{\sqrt {\pi }\, d x}+\frac {4 \cosineIntegral \left (d x \right )}{\sqrt {\pi }}\right )}{2}+\frac {a^{2} \sqrt {\pi }\, \sin \left (c \right ) d^{4} \left (-\frac {8 \left (-d^{2} x^{2}+2\right ) d^{2} \cos \left (x \sqrt {d^{2}}\right )}{3 x^{3} \left (d^{2}\right )^{\frac {5}{2}} \sqrt {\pi }}+\frac {8 \sin \left (x \sqrt {d^{2}}\right )}{3 d^{2} x^{2} \sqrt {\pi }}+\frac {8 \sinIntegral \left (x \sqrt {d^{2}}\right )}{3 \sqrt {\pi }}\right )}{16 \sqrt {d^{2}}}+\frac {a^{2} \sqrt {\pi }\, \cos \left (c \right ) d^{3} \left (-\frac {8}{\sqrt {\pi }\, x^{2} d^{2}}-\frac {4 \left (2 \gamma -\frac {11}{3}+2 \ln \left (x \right )+2 \ln \left (d \right )\right )}{3 \sqrt {\pi }}+\frac {-\frac {44 d^{2} x^{2}}{9}+8}{\sqrt {\pi }\, x^{2} d^{2}}+\frac {8 \gamma }{3 \sqrt {\pi }}+\frac {8 \ln \left (2\right )}{3 \sqrt {\pi }}+\frac {8 \ln \left (\frac {d x}{2}\right )}{3 \sqrt {\pi }}-\frac {8 \cos \left (d x \right )}{3 \sqrt {\pi }\, d^{2} x^{2}}-\frac {16 \left (-\frac {5 d^{2} x^{2}}{2}+5\right ) \sin \left (d x \right )}{15 \sqrt {\pi }\, d^{3} x^{3}}-\frac {8 \cosineIntegral \left (d x \right )}{3 \sqrt {\pi }}\right )}{16}\) \(397\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2*sin(d*x+c)/x^4,x,method=_RETURNVERBOSE)

[Out]

d^3*(a^2*(-1/3*sin(d*x+c)/d^3/x^3-1/6*cos(d*x+c)/d^2/x^2+1/6*sin(d*x+c)/d/x+1/6*Si(d*x)*sin(c)-1/6*Ci(d*x)*cos
(c))+2/d^2*a*b*(-sin(d*x+c)/d/x-Si(d*x)*sin(c)+Ci(d*x)*cos(c))-1/d^4*b^2*cos(d*x+c))

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 1.82, size = 140, normalized size = 1.04 \begin {gather*} -\frac {{\left ({\left (a^{2} {\left (\Gamma \left (-3, i \, d x\right ) + \Gamma \left (-3, -i \, d x\right )\right )} \cos \left (c\right ) + a^{2} {\left (-i \, \Gamma \left (-3, i \, d x\right ) + i \, \Gamma \left (-3, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{5} - 12 \, {\left (a b {\left (\Gamma \left (-3, i \, d x\right ) + \Gamma \left (-3, -i \, d x\right )\right )} \cos \left (c\right ) + a b {\left (-i \, \Gamma \left (-3, i \, d x\right ) + i \, \Gamma \left (-3, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{3}\right )} x^{3} + 8 \, a b \sin \left (d x + c\right ) + 2 \, {\left (b^{2} d x^{3} + 2 \, a b d x\right )} \cos \left (d x + c\right )}{2 \, d^{2} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*sin(d*x+c)/x^4,x, algorithm="maxima")

[Out]

-1/2*(((a^2*(gamma(-3, I*d*x) + gamma(-3, -I*d*x))*cos(c) + a^2*(-I*gamma(-3, I*d*x) + I*gamma(-3, -I*d*x))*si
n(c))*d^5 - 12*(a*b*(gamma(-3, I*d*x) + gamma(-3, -I*d*x))*cos(c) + a*b*(-I*gamma(-3, I*d*x) + I*gamma(-3, -I*
d*x))*sin(c))*d^3)*x^3 + 8*a*b*sin(d*x + c) + 2*(b^2*d*x^3 + 2*a*b*d*x)*cos(d*x + c))/(d^2*x^3)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 145, normalized size = 1.08 \begin {gather*} \frac {2 \, {\left (a^{2} d^{4} - 12 \, a b d^{2}\right )} x^{3} \sin \left (c\right ) \operatorname {Si}\left (d x\right ) - 2 \, {\left (a^{2} d^{2} x + 6 \, b^{2} x^{3}\right )} \cos \left (d x + c\right ) - {\left ({\left (a^{2} d^{4} - 12 \, a b d^{2}\right )} x^{3} \operatorname {Ci}\left (d x\right ) + {\left (a^{2} d^{4} - 12 \, a b d^{2}\right )} x^{3} \operatorname {Ci}\left (-d x\right )\right )} \cos \left (c\right ) - 2 \, {\left (2 \, a^{2} d - {\left (a^{2} d^{3} - 12 \, a b d\right )} x^{2}\right )} \sin \left (d x + c\right )}{12 \, d x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*sin(d*x+c)/x^4,x, algorithm="fricas")

[Out]

1/12*(2*(a^2*d^4 - 12*a*b*d^2)*x^3*sin(c)*sin_integral(d*x) - 2*(a^2*d^2*x + 6*b^2*x^3)*cos(d*x + c) - ((a^2*d
^4 - 12*a*b*d^2)*x^3*cos_integral(d*x) + (a^2*d^4 - 12*a*b*d^2)*x^3*cos_integral(-d*x))*cos(c) - 2*(2*a^2*d -
(a^2*d^3 - 12*a*b*d)*x^2)*sin(d*x + c))/(d*x^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{2} \sin {\left (c + d x \right )}}{x^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2*sin(d*x+c)/x**4,x)

[Out]

Integral((a + b*x**2)**2*sin(c + d*x)/x**4, x)

________________________________________________________________________________________

Giac [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 3.82, size = 1032, normalized size = 7.70 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*sin(d*x+c)/x^4,x, algorithm="giac")

[Out]

1/12*(a^2*d^4*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + a^2*d^4*x^3*real_part(cos_integra
l(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a^2*d^4*x^3*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) -
2*a^2*d^4*x^3*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) + 4*a^2*d^4*x^3*sin_integral(d*x)*tan(1/
2*d*x)^2*tan(1/2*c) - a^2*d^4*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2 - a^2*d^4*x^3*real_part(cos_inte
gral(-d*x))*tan(1/2*d*x)^2 + a^2*d^4*x^3*real_part(cos_integral(d*x))*tan(1/2*c)^2 + a^2*d^4*x^3*real_part(cos
_integral(-d*x))*tan(1/2*c)^2 - 12*a*b*d^2*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 12*a
*b*d^2*x^3*real_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a^2*d^4*x^3*imag_part(cos_integral(d*
x))*tan(1/2*c) - 2*a^2*d^4*x^3*imag_part(cos_integral(-d*x))*tan(1/2*c) + 4*a^2*d^4*x^3*sin_integral(d*x)*tan(
1/2*c) - 24*a*b*d^2*x^3*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) + 24*a*b*d^2*x^3*imag_part(cos_
integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 48*a*b*d^2*x^3*sin_integral(d*x)*tan(1/2*d*x)^2*tan(1/2*c) - a^2*d
^4*x^3*real_part(cos_integral(d*x)) - a^2*d^4*x^3*real_part(cos_integral(-d*x)) + 12*a*b*d^2*x^3*real_part(cos
_integral(d*x))*tan(1/2*d*x)^2 + 12*a*b*d^2*x^3*real_part(cos_integral(-d*x))*tan(1/2*d*x)^2 - 4*a^2*d^3*x^2*t
an(1/2*d*x)^2*tan(1/2*c) - 12*a*b*d^2*x^3*real_part(cos_integral(d*x))*tan(1/2*c)^2 - 12*a*b*d^2*x^3*real_part
(cos_integral(-d*x))*tan(1/2*c)^2 - 4*a^2*d^3*x^2*tan(1/2*d*x)*tan(1/2*c)^2 - 24*a*b*d^2*x^3*imag_part(cos_int
egral(d*x))*tan(1/2*c) + 24*a*b*d^2*x^3*imag_part(cos_integral(-d*x))*tan(1/2*c) - 48*a*b*d^2*x^3*sin_integral
(d*x)*tan(1/2*c) - 2*a^2*d^2*x*tan(1/2*d*x)^2*tan(1/2*c)^2 - 12*b^2*x^3*tan(1/2*d*x)^2*tan(1/2*c)^2 + 12*a*b*d
^2*x^3*real_part(cos_integral(d*x)) + 12*a*b*d^2*x^3*real_part(cos_integral(-d*x)) + 4*a^2*d^3*x^2*tan(1/2*d*x
) + 4*a^2*d^3*x^2*tan(1/2*c) + 48*a*b*d*x^2*tan(1/2*d*x)^2*tan(1/2*c) + 48*a*b*d*x^2*tan(1/2*d*x)*tan(1/2*c)^2
 + 2*a^2*d^2*x*tan(1/2*d*x)^2 + 12*b^2*x^3*tan(1/2*d*x)^2 + 8*a^2*d^2*x*tan(1/2*d*x)*tan(1/2*c) + 48*b^2*x^3*t
an(1/2*d*x)*tan(1/2*c) + 2*a^2*d^2*x*tan(1/2*c)^2 + 12*b^2*x^3*tan(1/2*c)^2 - 48*a*b*d*x^2*tan(1/2*d*x) - 48*a
*b*d*x^2*tan(1/2*c) + 8*a^2*d*tan(1/2*d*x)^2*tan(1/2*c) + 8*a^2*d*tan(1/2*d*x)*tan(1/2*c)^2 - 2*a^2*d^2*x - 12
*b^2*x^3 - 8*a^2*d*tan(1/2*d*x) - 8*a^2*d*tan(1/2*c))/(d*x^3*tan(1/2*d*x)^2*tan(1/2*c)^2 + d*x^3*tan(1/2*d*x)^
2 + d*x^3*tan(1/2*c)^2 + d*x^3)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sin \left (c+d\,x\right )\,{\left (b\,x^2+a\right )}^2}{x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((sin(c + d*x)*(a + b*x^2)^2)/x^4,x)

[Out]

int((sin(c + d*x)*(a + b*x^2)^2)/x^4, x)

________________________________________________________________________________________